

The Analysis Enterprise Tools for High Consequence Simulation

Advanced Simulation: A Critical Tool for Future Nuclear Fuel Cycles
A National Laboratory Workshop

December 14-16, 2005

Robert M. Ferencz
Leader, Methods Development Group
Lead, W Program ASC Advanced Applications

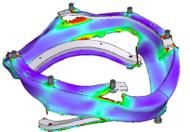
Work performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

The Methods Development Group

- MDG was organized in the 1970's to create, maintain and continuously improve a set of tools for large-scale engineering simulation at LLNL
- Primary focus on nonlinear solid mechanics incorporating
 - Large deformation continua and structural elements
 - Finite strain constitutive models
 - E.g., metals, foams, rubbers, composites, geomaterials
 - Contact/impact
 - Heat conduction
- MDG's principal software products
 - DYNA3D/ParaDyn explicit time integration for high-frequency structural dynamics
 - NIKE3D implicit time integration for quasi-statics and low-frequency response
 - TOAPZ3D implicit time integration for heat transfer
 - Diablo parallel, implicit multi-physics
- MDG works closely with LLNL programs
 - Over 100 people in multiple directorates have access to the software

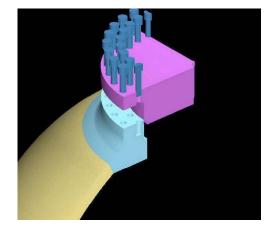
Software plus skilled analysts with developer consultations produce the simulation product

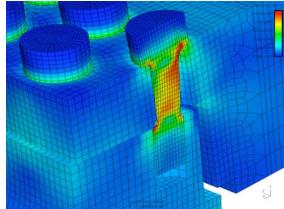
The Analysis Enterprise


ParaDyn provides nonlinear structural dynamics capabilities on ASC platforms

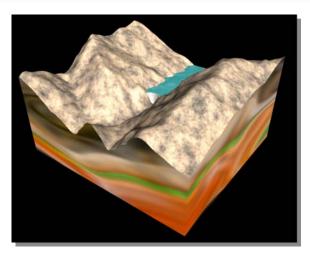
•In CY04, ParaDyn used for two million CPU-hours of throughput on LLNL parallel platforms

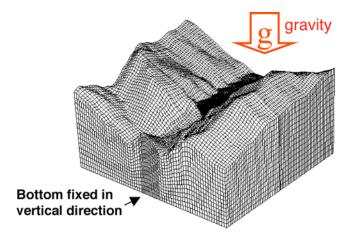
Used daily for engineering analysis and decisions

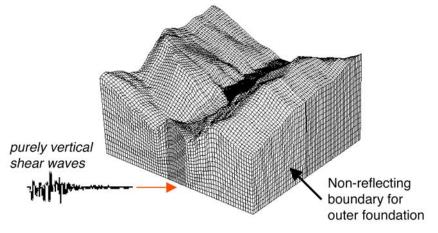

Sub-critical containment courtesy Kevin Roe


Flange detail from a transportation container courtesy Dan Badders

• A major engineering workhorse at Los Alamos, too.



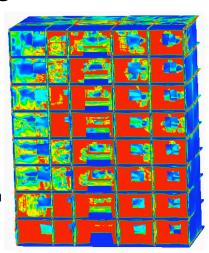

MDG tools applied to infrastructure assessments performed here...

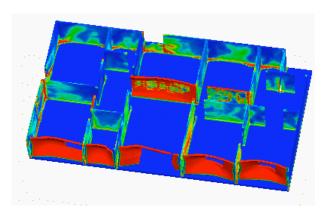

Work for Bureau of Reclamation

- Analyst-led effort (Noble, McCallen, et al.)
- Effects of local topography and rock jointing included in assessment of seismic response
- Illustrates need for complementary implicit and explicit FEM response calculations
- Simulation methodology migrated to BuRec

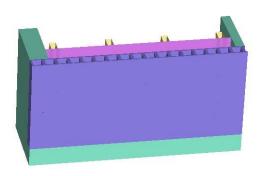
NIKE3D Static Initialization with Zero Displacement Control B.C.'s

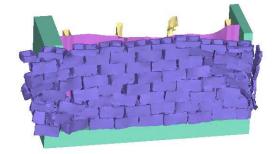
DYNA3D Seismic Analysis

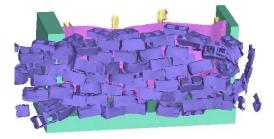

MDG tools applied to infrastructure assessments performed here and elsewhere



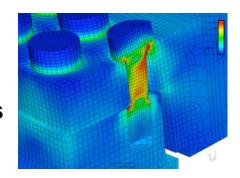
US Army Engineer R&D Center

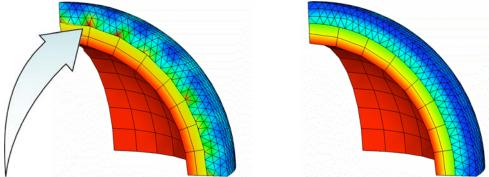



Apartment model with 30 million DOFS courtesy P. Papados

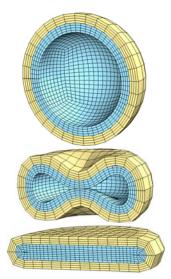


Coupled CTH/ParaDyn blast structure simulation


Building retro-design with textile liner

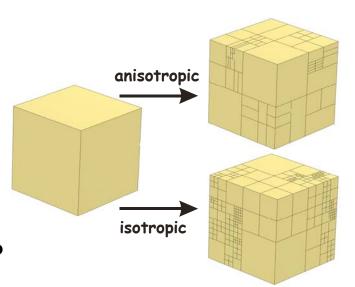


Contact Methods a focus both for parallel implementations and fundamental formulations


VGINEERING
Turning Concepts
into Reality

- Unbonded material interfaces have strong effects on many mechanical and structural assemblies
- Mortar Methods achieve mathematical consistency through segment-on-segment projections & constraints
 - Retain convergence of the underlying FEM

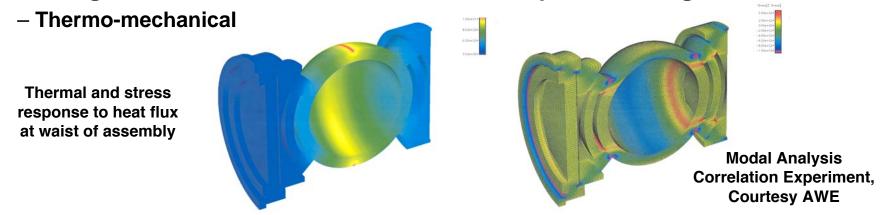
- Mortar methods eliminate singularities from typical node-on-segment methods
- This work extended academic efforts for 2D linear problems to 3D curved surfaces on irregular meshes & finite deformations
- Research now being "hardened" by practical application to programmatic needs

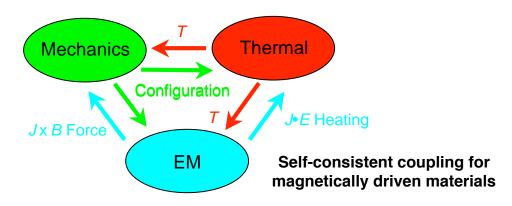


Several current LDRD projects contribute to ongoing enhancements of MDG's capabilities

ENGINEERING
Turning Concepts
into Reality

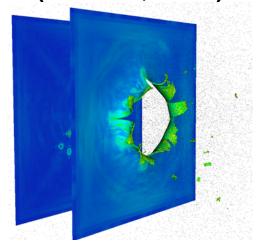
- Natural Element Method (Puso & Zywicz)
 - "Mesh-less" to accommodate extreme deformations
 - Penetration without pre-seeded perforation
 - Still Lagrangian for material model
- Electro-thermo-mechanical (combined EE & ME)
 - Advanced, higher-order EM capabilities being interfaced to multiple thermo-mechanics codes: Diablo and ALE3D
- Adaptive Mesh Refinement (Parsons & Solberg)
 - Provide feedback on quality of solution and automatically drive toward a better mesh
 - Research robust error estimators for nonlinear solid mechanics problems of interest to LLNL
 - Unique capability for anisotropic refinement
 - Requires lots of infrastructure this was the time to get in on the the ground floor of the Diablo architecture

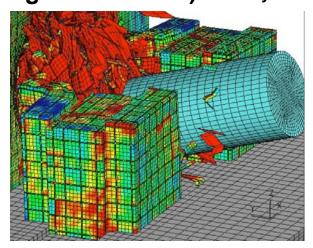


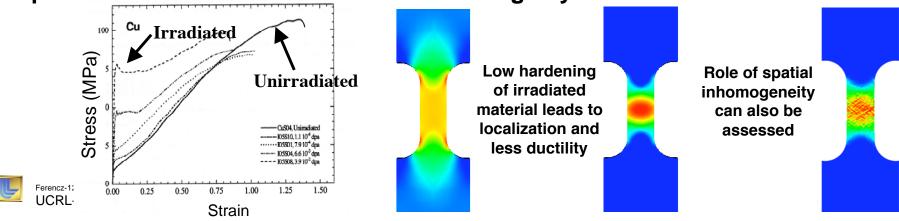

The Diablo code project is building an implicit capability to complement ParaDyn

- Migrating nonlinear capabilities of NIKE3D & TOPAZ3D to ASC platforms
- Creating a software architecture for multi-field problems, e.g.,

- Thermo-chemical for surface corrosion (eventually coupled with mechanics)
- Electro-thermo-mechanical
- Creating links to third-party CFD

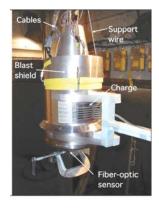


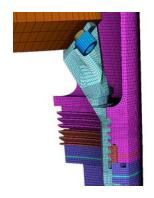

MDG codes leverages material model developments both internal and external

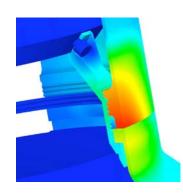

Steinberg-Guinan with 3D failure (W. Moss, LLNL)

• DTRA Concrete Model (Malvar et al., Karagozian & Case) courtesy Ed Kokko

• We can leverage LLNL's investment in multi-scale modeling and specialized models such as radiation damage by Arsenlis & Wirth



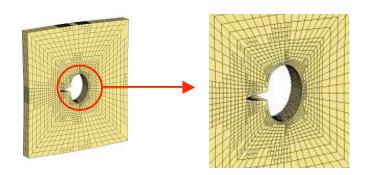

ASC is building engineering simulation tools for high consequence analysis

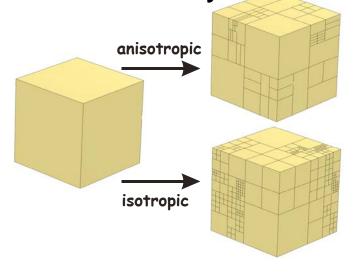


- The role of Verification & Validation is substantial
 - MDG tools benefit from independent validation, e.g.,

LANL multi-year study of a complex threaded joint under impulse load

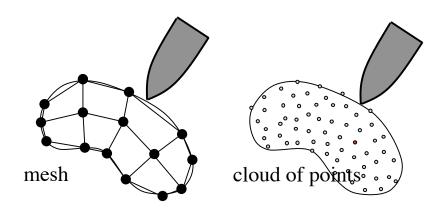
- Will need to "harvest" applicable past experiments and plan new ones
- MDG tools and experienced LLNL analysts can contribute engineering insight and decision making to new technology and design efforts
- MDG can partner with outside expertise, e.g., material models and other simulation capabilities, and support migration to other participants

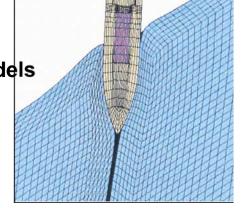

BACKUP SLIDES



Adaptive Mesh Refinement is a technology being made applicable to our problems

- When is a mesh good enough? AMR gives quantitative feedback.
- Relevant issues
 - Unstructured meshes for engineering geometries
 - Large-scale parallel implementation for ASC class computers
 - Robustness of error estimators for real-world nonlinear solid mechanics
- The first two issues required significant up-front programming investment
- The third issue will be our contribution to the research community
- Highlights to date:
 - Anisotropic refinement is a unique capability
 - Refinement to curved boundaries

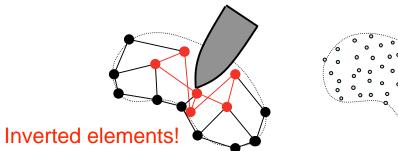


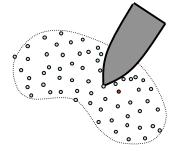


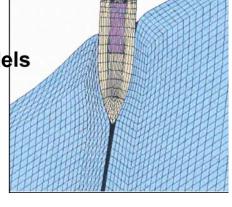
Natural Element Methods for Extreme Deformation

- Penetration and other problems break down Lagrangian FEM
 - Need to model beyond local material failure
- Developing new "mesh-less" methods
 - Keep Lagrangian description for compatibility w/ material models

Historical approach with pilot hole


- Key idea: adaptive integration using Voronoi Diagram
- Early results promising First paper already in submittal
- Project providing foundation for collaboration with J.S. Chen of UCLA
- This technology alone will not solve penetration modeling needs
 - E.g., need target material modeling and characterization

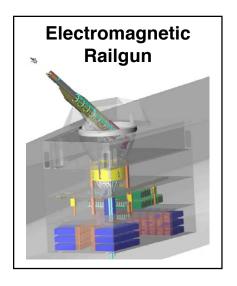


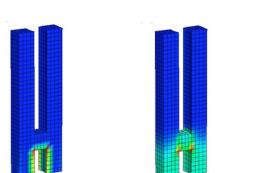

Natural Element Methods for Extreme Deformation

- Penetration and other problems break down Lagrangian FEM
 - Need to model beyond local material failure
- Developing new "mesh-less" methods
 - Keep Lagrangian description for compatibility w/ material models

Historical approach with pilot hole

- Key idea: adaptive integration using Voronoi Diagram
- Early results promising First paper already in submittal
- Project providing foundation for collaboration with J.S. Chen of UCLA
- This technology alone will not solve penetration modeling needs
 - E.g., need target material modeling and characterization

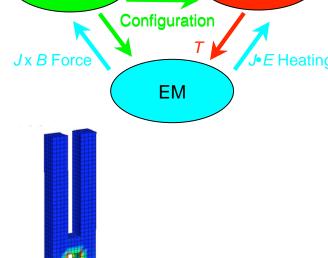



Electro-Thermo-Mechanical Coupling

ENGINEERING
Turning Concepts
into Reality

Thermal

- Historically, we had little experience dealing with systems where the electromagnetic and thermo-mechanical response share time scales
 - "Hand it over the wall and leave me alone" coupling was good enough
- Magnetically Driven Materials initiative requires capabilities for solving ETM simultaneously in a self-consistent manner
 - EM being made available to multiple thermomechanics codes: Diablo and ALE3D



Mechanics

(Bounding air domain removed; static configuration)

